skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yariv, Ehud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The motion of a disk in a Langmuir film bounding a liquid substrate is a classical hydrodynamic problem, dating back to Saffman (J. Fluid Mech., vol. 73, 1976, p. 593) who focused upon the singular problem of translation at large Boussinesq number,$${\textit {Bq}}\gg 1$$. A semianalytic solution of the dual integral equations governing the flow at arbitrary$${\textit {Bq}}$$was devised by Hugheset al.(J. Fluid Mech., vol. 110, 1981, p. 349). When degenerated to the inviscid-film limit$${\textit {Bq}}\to 0$$, it produces the value$$8$$for the dimensionless translational drag, which is$$50\,\%$$larger than the classical$$16/3$$-value corresponding to a free surface. While that enhancement has been attributed to surface incompressibility, the mathematical reasoning underlying the anomaly has never been fully elucidated. Here we address the inviscid limit$${\textit {Bq}}\to 0$$from the outset, revealing a singular mechanism where half of the drag is contributed by the surface pressure. We proceed beyond that limit, considering a nearly inviscid film. A naïve attempt to calculate the drag correction using the reciprocal theorem fails due to an edge singularity of the leading-order flow. We identify the formation of a boundary layer about the edge of the disk, where the flow is primarily in the azimuthal direction with surface and substrate stresses being asymptotically comparable. Utilising the reciprocal theorem in a fluid domain tailored to the asymptotic topology of the problem produces the drag correction$$(8\,{\textit {Bq}}/{\rm \pi} ) [ \ln (2/{\textit {Bq}}) + \gamma _E+1]$$,$$\gamma _E$$being the Euler–Mascheroni constant. 
    more » « less
  2. The hydrodynamic quantification of superhydrophobic slipperiness has traditionally employed two canonical problems – namely, shear flow about a single surface and pressure-driven channel flow. We here advocate the use of a new class of canonical problems, defined by the motion of a superhydrophobic particle through an otherwise quiescent liquid. In these problems the superhydrophobic effect is naturally measured by the enhancement of the Stokes mobility relative to the corresponding mobility of a homogeneous particle. We focus upon what may be the simplest problem in that class – the rotation of an infinite circular cylinder whose boundary is periodically decorated by a finite number of infinite grooves – with the goal of calculating the rotational mobility (velocity-to-torque ratio). The associated two-dimensional flow problem is defined by two geometric parameters – namely, the number $$N$$ of grooves and the solid fraction $$\unicode[STIX]{x1D719}$$ . Using matched asymptotic expansions we analyse the large- $$N$$ limit, seeking the mobility enhancement from the respective homogeneous-cylinder mobility value. We thus find the two-term approximation, $$\begin{eqnarray}\displaystyle 1+{\displaystyle \frac{2}{N}}\ln \csc {\displaystyle \frac{\unicode[STIX]{x03C0}\unicode[STIX]{x1D719}}{2}}, & & \displaystyle \nonumber\end{eqnarray}$$ for the ratio of the enhanced mobility to the homogeneous-cylinder mobility. Making use of conformal-mapping techniques and inductive arguments we prove that the preceding approximation is actually exact for $$N=1,2,4,8,\ldots$$ . We conjecture that it is exact for all $$N$$ . 
    more » « less